Iron Sulfur Molecular Inks for Pyrite Thin-Films

Amanda Weber Pyrite Collaboration Meeting 12-7-2010

0

Outline

- Motivation
- Synthesis
- H₂S annealing
- S₂ annealing
- Future Work

Motivation for Molecular Inks

- <u>Goal</u>: Find a convenient method for film deposition that has the correct composition, phase purity, and grain structure
- Benefits of Using Molecular Ink approach:
 - Solution based approaches are easier to scale up
 - Well controlled stoichiometry and minimal to no contamination (elemental precursors)
 - Simple film deposition (spin casting, doctor blading, drop casting)

Using dimethyl sulfoxide (DMSO) and ethanolamine as a solvent mixture to dissolve elemental precursors

Motivation: Paper by Mitzi stating that a mixture of DMSO and ethanolamine was an effective wetting agent for thermally oxidized silicon substrates; less toxic than hydrazine

Previous molecular ink approaches:

- CZTS (copper zinc tin sulfur/selenide) films: Dissolved elemental precursors in hydrazine and obtained devices with over 9.6% efficiency (as opposed to previously obtained efficiencies of 3.2% and 6.7%)
- CIGS (copper indium gallium sulfur/selenide): '' '' in hydrazine and obtained efficiencies of 10.1%

D. B. Mitzi, Adv. Mater, 2009, 21, 3141-3158. Wikipedia.com

Synthesis Process Inside N₂ Glovebox

•Each layer is roughly 150 nm

•200 °C is ideal pre-baking temperature since the boiling points of DMSO and ethanolamine are 189 °C and 170 °C respectively; by FT-IR all organics seem to be removed Form mixture of DMSO and ethanolamine (6.5:1)

Dissolve S (1 M) in solution and stir for >6 hours (at room temp)

Add Fe (0.33 M) and stir for >24 hrs.

Spin coat at 1500 rpm for 60s

Pre-bake on hotplate at 200 °C for 5 min.

Anneal in S (25 mg) at 550° C for 6 hours

H₂S 450 ℃, 15hrs

H₂S, 550 ℃, 15hrs

<mark>500 ℃, 6</mark>hrs, 25 mg S

- Yields pure pyrite, but morphology is not ideal
 - Little grain growth
 - Not well connected grains

550 °C, 6hrs, 25mg S, 7 layers

600 °C, 6h, 25mg S

15mg S, 550 ℃, 6hr, 7layers

550 °C, 6hrs, 100 mg S, 7 layers

Future Work

- Determining chemical composition
 - Thermogravimetric Analysis
 - Differential Scanning Calorimetry
 - Mass Spectrometry
 - Powder X-Ray Diffraction
 - Nuclear Magnetic Resonance
 - XPS look for contaminants (O, C, N, Na)
- S₂ annealing: vary S content, temperature, total cook time
- H₂S annealing: time, temperature
- Exchanging ethanolamine with ethylene glycol (less toxic)
- Alloying with Zn